安徽视觉算法图像识别模块专业
AI大浪潮下,许多企业都在不断借助AI来提升自己的行业竞争力,数据标注企业也不例外,传统的人工标注效率不足的弊端困扰了多年,如今新的“引擎”就在眼前,他们当然不会放过这个机会。针对这样的需求,慧视光电利用AI模型训练打造的深度学习算法开发平台SpeedDP,就可以替代人工进行海量的图像数据标注。相比于人工,SpeedDP具有多个优势。慧视SpeedDP的出现,将是数据标注企业降本增效的得力帮手,目前慧视SpeedDP开发平台主要提供目标检测算法的开发功能,不同的用户可针对自己的业务场景进行AI算法的定制化开发以及算法模型的快速迭代优化。RV1126是国产化板卡吗?安徽视觉算法图像识别模块专业
图像识别模块
无人机搭载如光电吊舱等带有摄像头的设备后,达到了实现智能识别的硬件条件,但是传统的摄像头只能获取图像,并不具备AI识别的功能。无人机AI识别算法的关键还是在于模仿人眼一样进行视觉处理,然后AI进行智能提取和分析图像,再和训练模型进行快速比对,从而在无人机快速飞行的过程中做到实时目标识别。要想实现目标识别需要的硬件支持就是AI图像处理板。图像处理板通过算法的赋能,就能够对目标区域的物体进行AI识别分析,从而做出判断。由于无人机作业的环境复杂,因此对于图像处理板的要求需要进一步提升。成都慧视开发的Viztra-HE030图像处理板,采用了工业级芯片RK3588,采用先进架构,8核(4大4小)处理,算力能够达到6.0TOPS。同时,慧视光电能够根据需求环境定制丰富的输出接口。四川RK3399Pro主板图像识别模块电子元器件远海牧场监控可以加装慧视RV1126图像处理板。

随着技术的不断迭代发展,人工智能应用已潜移默化的深入到人们的日常生活中,智能图片搜索、人脸识别、指纹识别、扫码支付、视觉工业机器人、辅助驾驶等图像视频识别产品正在深刻改变着传统行业。而这些功能实现的背后,都要依赖于人工智能数据的标注。但是如果遇到数据量庞大的标注需求,传统的人工标注就显得费时费力,会影响整个项目的进度。慧视SpeedDP是针对AI零基础用户的低门槛AI开发平台,提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能。SpeedDP提供丰富的算法参数设置接口,满足不同用户业务场景的定制化需求。此外,慧视SpeedDP开发平台支持本地化服务器部署,数据敏感的用户也无需担心数据信息泄露的问题。
慧视VIZ-YWT201微型双光吊舱集成集成可见光摄像机、红外热像仪等传感器,能够实现昼夜成像,内置成都慧视自研全国产化RV1126图像跟踪板,搭载自研AI跟踪算法,重量只有280g。能够对地面车辆、人员等目标进行昼夜观察、识别、捕获和跟踪,上报目标的图像及坐标信息。慧视VIZ-YWT202微型双可见光吊舱集成宽窄视场2路可见光摄像机,重量小于260g,采用金属外壳,抗冲击力强,具有功耗低、陀螺稳定、小体积、轻重量的优点。慧视VIZ-GT05V微型三轴双可见光惯性稳定吊舱搭载一颗千万级可见光CMOS传感器和一颗星光级可见光CMOS传感器,具备大小两个视场角,能够实时输出1080P的高清可见光视频,可实现夜间微弱光线下的目标观测。可应用于微小型无人飞行器、无人车、无人艇和其他无人观测设备,进行警务执法、电力巡检、安保巡视、救援搜索、消防救火等任务。AI算法赋能下的图像处理板能够进行智能目标识别。

无人机作为高空巡逻侦查的辅助平台,凭借其灵活、广阔的视野,能够为治安巡逻提供更多的地面信息,有效弥补视野盲区,实现三位一体防控。例如公安可以通过无人机开展“空中喊话”,将反诈、防溺水、消防安全等知识“空投”给市民,开展“空中喊话”。在高空喊话的同时,无人机还将现场巡检画面实时传回情指中心联合指挥大厅,民警将巡航检查发现的小区消防通道堵塞、居民楼飞线充电等隐患,迅速派发至属地职能单位予以整改。这种模式下,需要无人机搭载吊舱来实现相应功能。成都慧视推出的VIZ-GT07D三轴双光微型吊舱就是一个不错的选择。这款吊舱是一款微型的三轴双光惯性稳定吊舱,集成了640×512高分辨率红外相机、1300万像素的全高清可见光相机和陀螺稳定平台,能够实现夜间和白天24小时的无人机巡逻工作。RK3588图像处理板是工业级别的。贵州RK3399主板图像识别模块
高精度的图像识别可以用成都慧视开发的RK3588图像处理板。安徽视觉算法图像识别模块专业
深度学习是机器学习的一个分支,只在近十年内才得到广泛的关注与发展。它与机器学习不同的,它模拟我们人类自己去识别人脸的思路。比如,神经学家发现了我们人类在认识一个东西、观察一个东西的时候,边缘检测类的神经元先反应比较大,也就是说我们看物体的时候永远都是先观察到边缘。就这样,经过科学家大量的观察与实验,总结出人眼识别的模式是基于特殊层级的抓取,从一个简单的层级到一个复杂的层级,这个层级的转变是有一个抽象迭代的过程的。深度学习就模拟了我们人类去观测物体这样一种方式,首先拿到互联网上海量的数据,拿到以后才有海量样本,把海量样本抓取过来做训练,抓取到重要特征,建立一个网络,因为深度学习就是建立一个多层的神经网络,肯定有很多层。有些简单的算法可能只有四五层,但是有些复杂的,像刚才讲的谷歌的,里面有一百多层。当然这其中有的层会去做一些数学计算,有的层会做图像预算,一般随着层级往下,特征会越来越抽象。安徽视觉算法图像识别模块专业
上一篇: 山东算法防抖图像识别模块供应商
下一篇: 安保视频压缩与传输