江西低压线目标识别开发

时间:2024年12月31日 来源:

西气东输、西油东送等带来了大量的油气管线建设,这些管道呈线性分布,长达百公里,是我国经济稳定发展的重要支撑。这些管道有的处在人口密集区,有的则位于山区、沙漠等环境恶劣区域,有些已运行20余年,历经风雨,腐蚀、损坏的迹象初显,存在极大地安全隐患,为保障能源供应稳定,定期的油气管线巡检便必不可少。在过去,管线巡检全依赖于巡检工人一步一个脚印走出来,他们必须得沿着长长的管线巡视,检查管道本体及环境。特别是对我国西部山区、西北沙漠和跨越大江大河等管线的巡查,以及在自然灾害发生时的巡线检查,需要消耗大量的人力物力成本,甚至一些区域还会危及到巡检人员的人身安全。反无人机用的图像处理板哪里有?江西低压线目标识别开发

目标识别

如今,AI已走入万千企业,其展现出的强大赋能作用,让无数企业受益。尤其实在制造业中,AI能够赋能多个领域,让企业更加高效、更加节能。例如许多大型的纺织工厂,定期的机器巡检以及对产品的质检至关重要。传统模式是采用人工巡检,大量的巡检人员对各种的纺织机器和产品进行肉眼质检,虽然这种模式效率低、精度无法掌握,但也是无赖之举。随着AI的发展应用,利用AI进行质检,能够弥补了这些缺陷。通过在摄像头的基础上集成具备图像识别的AI图像处理板、AI算法以及大数据分析技术,就能够搭建一套简易但功能强大的AI质检系统。江苏无源目标识别办公平台慧视光电的识别板卡定制快。

江西低压线目标识别开发,目标识别

激光除草模式中AI智能识别是很关键的一环,需要机器人正确识别杂草,而这基于AI的深度学习、目标识别检测等功能,通过不断的训练学习,AI能够精细识别什么是杂草什么是作物。目前,市面上比较好用的AI深度学习平台众多,例如成都慧视推出的SpeedDP深度学习算法开发平台,就能够通过大量的数据部署,再经过长时间的训练,就能够实现跟人眼一样的目标识别能力。慧视SpeedDP是针对AI零基础用户的低门槛AI开发平台,提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能。SpeedDP功能简洁、上手快,是当下进行AI深度学习训练的选择。而且目标识别检测领域,成都慧视开发的高性能Viztra-HE030图像处理板,可以通过四大四小处理器高达6.0TOPS的算力,精细分析识别到的物体,区分作物和杂草,进而为机器人提供正确的信息,辅助除草。

摄像头需求识别出现在镜头的物体。例如是飞过来的杂物,还是闯入的人或者动物,如果摄像头能够智能识别,那么就可以实现上述目的。而要实现这样的功能,一个很简单的方法就是在传统摄像头的基础上植入高性能的AI图像处理板。图像处理板通过定制接口和摄像头连接,在目标识别算法的赋能下,就能够对摄像头获取的物体进行AI识别分类,从而对摄像头发出指令是否锁定跟踪目标,从而转动摄像头。成都慧视开发的Viztra-ME025图像处理板,是慧视光电采用瑞芯微RK3399pro芯片开发而成的高性能板卡,芯片基于双Cortex-A72+四Cortex-A53大小核CPU结构;CPU主频1.8GHz;高性能+强大的算力3.0TOPS,GPU采用Mali-T860MP4,支持1080P视频编解码、H.265硬解码。分割算法识别找慧视。

江西低压线目标识别开发,目标识别

在硬件的选择上,慧视光电利用瑞芯微RV1126和RK3588开发的Viztra-LE026图像处理板和Viztra-HE030图像处理板已经在定制算法的赋能下,板卡可以根据相机的接口进行深度定制,可以很好地进行小目标的锁定跟踪。

而在算法领域,如果企业想要使用自己的算法,我司还可以提供算法训练提升平台SpeedDP,这是一个深度学习算法开发平台,企业可以利用算法模型的开发训练,通过大量的AI自动图像标注,能够让算法更加聪明,不断提升自身算法的精度。 FPV目标识别用慧视开发的RK3399Pro图像处理板。贵州低压线目标识别情况

FPV目标识别用慧视开发的RK3588图像处理板。江西低压线目标识别开发

交管人员远程操控无人机在道路上空进行巡飞,就能够发现哪条路上有违停车辆。相较于传统治理,无人机拥有更高视野及机动性。在提前规划无人机航线后,“自动机场”内部署的无人机会定时进行空中巡视,一旦发现违停车辆即开展图像取证。随后,后台系统将实时推送违停提示短信至车主,提醒其在10分钟内驶离。对于规定时间内未驶离的车辆,系统将通知就近警力赶赴现场,二次取证并进行整治。这个过程中,可以利用无人机吊舱进行辅助,吊舱的使用能够进一步提升效率。例如成都慧视开发的VIZ-GT07D微型三轴双光惯性稳定吊舱,吊舱集成了640×512高分辨率红外相机、1300万像素的全高清可见光相机和陀螺稳定平台。当发现违停车辆时,无需抵近,即便是夜间也能够通过变焦放大就能够对车辆进行信息取证。江西低压线目标识别开发

信息来源于互联网 本站不为信息真实性负责