安全目标跟踪
在深度学习中,解决训练数据不足常用的一个技巧是“预训练-微调”(Pretraining-finetune),即大数据集上面预训练模型,然后在小数据集上去微调权重。但是,在训练数据极其稀少的时候(只有个位数的训练图片),这个技巧是无法奏效的。图2展示了一个检测模型预训练过后,在单张训练图片上微调的过程:尽管训练集上逐渐收敛,但是检测器仍无法检测出测试图片中的物体。这反映出了“预训练-微调”框架的泛化能力不足。利用SpeedDP经过大量的数据训练后,机器就能够精确检测跟踪图像中的物体。用于安防监控及状态监测的摄像头数量的飞速发展。安全目标跟踪
目标跟踪
随着社区等安防向着智能化的进一步发展,越来越多的领域对传统意义上的视频监控提出了更加的严格要求,虽然传统监控系统已经可以满足人们“眼见为实”的要求,但同时这种监控系统要求监控人员不得不始终看着监视屏幕,获得视频信息,通过人为的理解和判断,才能得到相应的结论,做出相应的决策。因此,让监控人员长期盯着众多的电视监视器成了一项非常繁重的任务。特别在一些监控点较多的情况下,监控人员几乎无法做到完整的监控。辽宁数据目标跟踪成都慧视光电技术有限公司推出基于全国产化RK3399PRO板的高性能图像处理板卡。

成都慧视开发的RK3588系列高性能图像处理板Viztra-HE030,能够在-40℃~65℃的环境中进行工作,用在寒冷的北方冬天电力巡检领域,可以有效支撑无人机的稳定工作。此外,这款板卡的存储温度范围在-55℃~75℃,遇到更加极端寒冷的天气时,不使用也能够有效抗寒。RK3588属于旗舰机芯片,搭载八核64位CPU,主频高达2.4GHz。集成ARMMali-G610MP4四核GPU,内置AI加速器NPU,可提供6Tops算力,用在电力巡检领域能够快速稳定处理复杂的场景,帮助进行保供电工作。
“启明935A”系列芯片已经成功点亮,并完成各项功能性测试,达到车规级量产标准。启明935A是行业首颗基于Chiplet(芯粒/小芯片)异构集成范式的自动驾驶芯片,但并非单一芯片,而是一个家族系列。启明935HUBChiplet可以和不同数量的大熊星座AIChiplet互相搭配,再结合灵活的封装方式,快速形成不同性能等级的SoC芯片。它还支持高带宽的PBLink多芯互连,双芯双向带宽128GB/s,四芯双向带宽64GB/s。启明935A每颗芯片都支持比较大20路的1080p60摄像头输入,可应用于各类端侧AI部署。得益于大熊星座NPU天然支持Transformer结构,初步支持的模型有Yolo系列、ResNet50、PSPNet、PointNet++、TrafficSign_Retinanet、BevDet、miniCPM、Unet_ResNet50、PointPillars、PillarNest、M2track、BevFusion、PaliGemma、LLaMa-3B、8B等等。振动测试是否通过正是确定板卡能否在这样的环境下正常完成工作的关键手段。

进入冬季,北方各地陆续出现冰冻天气,给不少地方的保供电工作增添了难度。目前,大多数地方都采用无人机巡检的模式,但是面临如此寒冻的天气,无人机也可能会“懈怠”。但是大面积覆冰的影响下,人工巡检又很难到达很多区域,所以还是不得不依靠无人机,只是需要性能更加强悍的无人机。无人机电力巡检依靠可见光或者红外两种方式进行自动巡视检测,这其中,用于进行图像处理的传感器性能尤其重要。面临如此寒冷的天气,图像处理板能否正常工作十分关键,因此选对图像处理板,关系整个寒冬的电力巡检。RK3399图像处理板是我司自主研发的目标跟踪板,该板卡采用国产高性能CPU,搭载自研目标跟踪及跟踪算法。哪里有目标跟踪技术
慧视RV1126板卡可以用于大型公共停车场。安全目标跟踪
目标运动估计是根据目标在过去的位置对目标的运动规律加以总结,并以此对目标将来的运动状态进行预测。正确的预测,可以缩小匹配的计算区域,大幅的降低匹配计算量。在视频跟踪系统中由于被跟踪的目标处于运动状态,为了把目标始终保持在摄像机视野之内,必须对摄像机加以控制。在实际应用中,摄像机被固定在云台上,云台本身不做平移运动,但可以控制云台进行水平摆动和上下俯仰,从而带动摄像机做相应运动。所以,对摄像机的控制就是对云台的控制。安全目标跟踪
上一篇: 湖南目标跟踪产品
下一篇: 电力应急目标跟踪诚信推荐